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Multiview Facial Landmark Localization in RGB-D
Images via Hierarchical Regression
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and Xiaoou Tang, Fellow, IEEE

Abstract— In this paper, we propose a real-time system of
multiview facial landmark localization in RGB-D images. The
facial landmark localization problem is formulated into a regres-
sion framework, which estimates both the head pose and the
landmark positions. In this framework, we propose a coarse-to-
fine approach to handle the high-dimensional regression output.
At first, 3-D face position and rotation are estimated from the
depth observation via a random regression forest. Afterward,
the 3-D pose is refined by fusing the estimation from the
RGB observation. Finally, the landmarks are located from the
RGB observation with gradient boosted decision trees in a pose
conditional model. The benefits of the proposed localization
framework are twofold: the pose estimation and landmark
localization are solved with hierarchical regression, which is
different from previous approaches where the pose and landmark
locations are iteratively optimized, which relies heavily on the
initial pose estimation; due to the different characters of the
RGB and depth cues, they are used for landmark localization
at different stages and incorporated in a robust manner. In the
experiments, we show that the proposed approach outperforms
state-of-the-art algorithms on facial landmark localization with
RGB-D input.

Index Terms— Facial landmark localization, gradient boosting
decision tree, random binary pattern, random forest (RF).

I. INTRODUCTION

FACIAL landmark localization is a fundamental problem
in many computer vision applications, including 3-D face
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modeling, face tracking, cartoon generation, and face recog-
nition. It has been widely studied for the past two decades
[1]–[6]. Many recent works have shown impressive localiza-
tion results on near-frontal face images [7], [8]. However, the
large variations of face appearance caused by illumination,
expression, and out-of-plane rotation make the robust and
accurate localization in real-world applications still a chal-
lenging task.

Given a parametric face model S, the goal of facial
landmark localization with an input image I is to esti-
mate the model parameters SI , which minimizes the dif-
ference between the estimation and the ground truth ̂SI

(i.e., SI = arg minS ||̂SI −S||2). Existing image-based methods
can be generally divided into two categories: 1) detection-
based and 2) regression-based approaches. Detection-based
approaches [3], [9]–[12] usually extract local appearance for
each facial landmark. The localization procedure can be con-
ducted with a searching window over the image. To handle
the ambiguous or occluded cases, these approaches usually
need the landmark distribution constraints as the shape prior
to refine the result. However, the exhaustive searching process
is time consuming and hard to reach interactive performance.

Recently, many image-based approaches tend to locate
the landmarks by updating the initialization guess iteratively
with the regression technique. The active appearance model
(AAM) [13], [14], as a classical face representation method,
encodes the face shape and global appearance together into a
statistical model in the training phase. For a new input face
image, the difference between the face appearance and the syn-
thesized model is used to drive a parameter update procedure.
References [4] and [15] propose to find the best estimation
with subsequential nonlinear regression steps to update the
AAM parameters. Meanwhile, local features, such as scale-
invariant feature transform [16] and binary features [17]–[21],
are popular in the regression-based approaches [22], [23] and
achieve impressive results. In [1] and [24], the algorithms cast
the votes for facial landmark location with random forest (RF)
regression on local patches. Similarly, deep convolutional
networks are used to detect major facial points by multilevel
regression [25]. These approaches present impressive results
on near-frontal faces. However, facial landmark localization
in the multiview condition is still challenging, as the face
texture shows substantial changes in large head rotation and
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Fig. 1. Framework of our multiview facial landmark localization in RGB-D images.

the performance of these algorithms may drop. Furthermore, it
is a nontrivial problem to set the region of the local landmarks
for the regression task. A narrow region leads to results that
are sensitive to initial landmark configuration, while a wide
region increases appearance modeling difficulty.

Fortunately, depth sensors provide valuable 3-D spatial cues
to resolve the ambiguity in the 2-D image data, which is
insensitive to the illumination change. The wide influential
work on body localization [26] has demonstrated its effective-
ness. In [27] and [28], high-resolution depth data are used
for nonrigid face tracking and 3-D pose estimation. Mean-
while, as the RGB and depth cues can give complementary
descriptions of the scene, the combination of the two cues
has also been proven to be a promising approach for many
vision tasks. The commercial depth and RGB cameras, such as
Microsoft Kinect, are used in [29] for facial cartoon animation.
Cai et al. [30] develop a deformable model fitting algorithm for
face tracking in depth and RGB sequences. In [31], depth input
is used together with an RGB image for 3-D face alignment.
However, this approach combines depth and RGB cues in RF
straight for face alignment, which needs high-resolution depth
input from 3-D scanners. In addition, the RF-based alignment
algorithm may cause the overfitting problem, which limits its
extensibility, especially in cases where the training and testing
data are heterogeneous.

In this paper, we propose a multiview facial landmark
localization system with RGB-D inputs. The system can
handle noisy depth input, such as the input from a Microsoft
Kinect camera, and achieve real-time performance. The facial
landmark location distribution is treated as a head pose con-
ditional model and our system estimates both the 3-D head
pose and 2-D landmark location. In the algorithm, we extract
random local binary patterns of different scales, and estimate
the facial parameters with hierarchical regression techniques.
Fig. 1 shows the flow diagram of the proposed system. The
depth channel and RGB channel are used at different stages:
the depth input is fed to the RF for face detection and
pose estimation at the beginning stage; the RGB input is fed
to gradient boosted decision trees (GBDTs) for head pose
and hierarchical facial landmark location regression when the
face is available. The pose estimation results from the depth
and RGB inputs are weighted and combined to improve the
precision.

The contributions of this paper include: we propose a
multiview facial landmark localization method with a new
framework for the combination of the RGB and depth cues,
which improves the accuracy of head pose and facial landmark
localization. In addition, we take a hierarchical regression
approach to locate the facial landmarks. The hierarchical con-
figuration models the facial appearance variation in different
levels, which lowers the learning difficulty for the regression
framework and achieves a high generalization ability.

The remainder of this paper is organized as follows. The
related work and building block algorithms are presented in
Section II. In Section III, we first show the pose estimation
in depth and RGB inputs individually, followed by the pose
fusion from these two observations. After that, the multiview
facial landmark localization in the RGB channel is formulated
into a regression framework and the detailed GBDT-based
regression algorithm is given in Section IV. The system
implementation and experimental results on different databases
are shown in Section V. Finally, Section VI concludes this
paper.

II. RELATED WORK AND PRELIMINARIES

In this section, we give a brief review of the randomized
binary features and pattern regression techniques used in the
following sections.

A. Comparison-Based Randomized Binary Pattern

The feature descriptors based on image intensity comparison
are widely used for vision tasks, such as visual correspondence
and object matching. BRIEF [17], ORB [19], BRISK [20],
and FREAK [21] are some examples. The core idea of these
features is that a binary string derived from simply comparing
pairs of image intensities can efficiently describe a keypoint.
For the purpose of scale and rotation invariances, different
random sampling patterns are used in ORB and BRISK. The
key advantage of these binary descriptors is that the usage of
the Hamming distance can efficiently replace the Euclidean
distance, which makes these features suitable for applications
with low memory and real-time requirement. In the remaining
part of this paper, we take a similar binary descriptor with the
following definition:

uk(I ) = [u0(I ), . . . , uk−1(I )] (1)
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Fig. 2. Object detection via Hough forest.

where

ui(I ) =
{

1, gi
(

I, p0
i , p1

i

)

> τi

0, else
. (2)

In (2), ui(I ) is the binary function defined on the input
pattern I and a pairwise independent sampling function
gi(I, p0

i , p1
i ) with sampling pair {p0

i , p1
i } and threshold τi .

Note that the combination of {p0
i , p1

i , τi } defines a binary
feature.

The main difference of the proposed binary descriptor u
with previous mentioned binary descriptors is in the definition
of the input pattern sampling region �. Since we use u for
the tasks of facial landmark regression, the correspondent
pattern sampling region is determined by the parameterized
regression target. At the coarse level of the facial parameter
regression, the pattern sampling region covers the whole head
region. When the regression goes further to the subtle facial
landmark location, the sampling pattern is restricted to be in
the neighbor of the facial components. � keeps a reasonable
scale with the correspondent regression target, such that we
can do hierarchical sampling and localization in a coarse-to-
fine manner.

B. RF for Object Detection and Pose Regression

RF [32], [33] is a simple but powerful learning tool widely
used for the classification as well as regression tasks. A typical
RF consists of a set of decision trees. Each nonleaf node
of a decision tree contains a binary test that partitions the
input data. At the training stage, the input data are recursively
partitioned via hierarchically building the binary test for each
nonleaf node. Each tree is grown until a predefined stopping
criterion (e.g., the maximum tree depth or the number of
minimum samples falling to a leaf node) is reached. Each leaf
contains the information about the training samples reaching
it, e.g., the class distribution in the case of classification or
the predicted outcome in the case of regression. At the test
stage, a sample is passed down to the leaf node and takes the
predicted output value or class label with maximum posterior
probability.

An ensemble of these trees is assembled and trained in a
randomized way to achieve better generalization and stability,

compared with a single tree. The randomization is obtained by
the following rules: training each tree with a random subset
of training samples or constructing binary tests and randomly
selecting a subset at each nonleaf node. In our experiments,
these two rules are used together for RF construction. We use
the 1-D random binary pattern u1 to construct the random
binary test set.

Hough forest [34] is a special type of RF used for object
detection. Similar to the generic RF training process, a set
of labeled samples P = {uk(xi ), ci , di } are fed to build the
random decision trees recursively, where uk(xi ) is the random
binary pattern of input xi , and {ci , di } is the label pair, which
indicates the existence of the object and the offset to the object
center. Two types of measurement are used to evaluate the
quality of node splitting during the training. Classification
uncertainty is used to measure the impurity of the object
and nonobject splitting. Regression uncertainty corresponds
to the uncertainty of object specified sample offset. The two
types of measurements are used together for best splitting
determination in the training process. The test stage is shown
in Fig. 2. Given an input image, a set of samples is generated
via sliding the detection window. The nonobject samples are
filtered out via going through the RF. The remaining object
candidates are left and used for predicting the object location
via Hough transform.

C. GBDTs for Pose Regression and Landmark Localization

Gradient boosting [35] is another widely used regression/
classification technique for extensive vision tasks, such as
object localization [4], [7] and pose estimation [36]. It achieves
the state-of-the-art result [23] in the task of face alignment.
The gradient boosting method consists of an ensemble of weak
prediction models, which are additively combined to output
the final prediction. GBDT is a specific version of gradient
boosting where the weak prediction model is a decision tree.

Fig. 3 shows our GBDT scheme. A GBDT that takes
random binary patterns for weak prediction model learning
is used for the regression task. Here, we use depth-k decision
trees in the GBDT. Each tree can be represented as a pre-
diction function h(uk(x)). uk(x) is a k-dimensional random
binary pattern extracted from the input sample x . h(uk(x))
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Fig. 3. GBDTs for regression.

partitions the sample space to 2k disjoint sets. Given the L2
loss objective function, a decision tree represents a piecewise
prediction function, which corresponds to the 2k output of leaf
nodes.

The boosting method fits the facial landmark localization
problem very well since it provides an efficient way to select
the random binary pattern features. Specifically, in the GBDT
training process, the goal is to find a regression function
F(x) that maps an input feature vector x to a target value y,
while minimizing the expected value of the L2 loss function
�(y, F(x)). F(x) is the sum of T stages of weak regression
functions

F(x) =
T

∑

t=1

ρt ht
(

uk
t (x)

)

(3)

where ρt is the learning rate for each stage t and is given a
fixed value in our experiments, and ht (uk

t (x)) is the regression
function of a k-dimensional random binary pattern uk

t (x). For
simplicity, the outputs correspondent to all the 2k enumerative
values of uk

t (x) are not identified explicitly in the equation.
The GBDT learning is a greedy stage-wise approach. At each
training stage t , we select a weak regressor h∗(uk∗

t (x)) from
a large random binary feature pool {ut

k(x)} that maximally
decreases the total loss for N training samples

h∗(uk∗
t (x)

) = arg min
{h(utk(x))}

N
∑

i=1

�(yi , Ft−1(xi ) + h
(

uk(xi )
)

. (4)

A steepest descent step is then applied to the minimization
problem of (4). It is infeasible to apply gradient descent
on h(uk(xi )) since the weak regressor represents a piece-
wise constant function. So, at each stage t , we compute the
pseudoresiduals [35] by

ỹi = −
[

∂� (yi − F(xi ))

∂ F(xi )

]

F(xi )=Ft−1(xi ).

(5)

In our implementation, we use the least squares for the loss
function �(y, F(x)) and then ỹi = yi −Ft−1(xi). The problem
thus becomes

h∗(uk∗
t (x)

) = arg min
{h(utk (x))}

N
∑

i=1

∥

∥ỹi − ht
(

ut
k(x)

)∥

∥

2
. (6)

Given a random binary pattern uk(x), h(uk(x)) can be
naturally solved in (6), since the its output is the mean of
ỹi of the samples that fall into the corresponding leaf node.

Algorithm 1 Training Process for Gradient Boosting Random
Binary Pattern Regression

1: Input: {xi }N
1 , {yi }N

1 .
2: Output: F(x) = ∑T

t=1 ρt ht (uk
t (x)).

3: F0(x) =mean{yi}N
1 .

4: Randomly generate a pool of binary patterns {uk}K
1 .

5: for t = 1 to T do
6: for i = 1 to N do
7: ỹi = yi − Ft−1(xi ).
8: end for
9: uk∗

t (x) = arg minut k(x)

∑N
i=1 ‖ỹi − h(ut

k(xi ))‖2.
10: Ft (x) = Ft−1(x) + ρt h∗(uk∗

t (x)).
11: end for

We simply choose the suitable {ut
k(x)} in the training process.

The pseudocode of our GBDT regression is described in
Algorithm 1.

III. FACE DETECTION AND POSE ESTIMATION

IN RGB-D IMAGES

At the beginning stage of the proposed facial landmark
localization framework, the face is detected first in the depth
input, followed by the pose estimation in the RGB and depth
channels, respectively. Specifically, we first obtain a prediction
of face detection and pose estimation in the depth input using a
random decision forest-based approach proposed in [27]. With
the estimated head position, we can crop the corresponding
RGB image and get the face, in which we run a GBDT
regression to obtain another prediction of the head rotation.
The final result is obtained by fusing the two predictions.

This approach performs 3-D face detection and pose esti-
mation in the depth input via Hough forests (Section II-B).
The annotated depth images are provided to build the training
patch set P . Each training patch Pi ∈ P is denoted as
{Di , λi , υi , θi }, where Di denotes the cropped patch from the
depth input. The class label λi ∈ {−1, 1} is a negative/positive
sample indicator. υ indicates the offset from the current
patch center to the object center. θ denotes the head rotation
represented by Euler angle. In the training process, we need
to learn a binary test for each internal node using a random
binary pattern u1(Di : p0

i , p1
i , τi ) defined as

u1(Di ) =
{

1, avg
{

Dp0
i

} − avg
{

Dp1
i

}

> τi

0, else
(7)

where {p0
i , p1

i } are sampling rectangles within the patch Di

and τi is the threshold.
At each internal node in the training process, we randomly

generate a pool of random binary patterns {u1(·)} and select
the one that produces the maximum discriminative perfor-
mance.

For a patch set P , we use the weighted entropy to measure
the classification uncertainty Uc

Uc
(P : u1(D)

) = −
∑

ϕ∈{L ,R}
wϕ

∑

λ∈{−1,1}
p(λ|Pϕ)ln(p(λ|Pϕ))

(8)
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where L and R denote the left child and the right child of the
node, respectively, wϕ=L ,R is the percentage of patches falling
into the left or the right child, and p(λ|Pϕ) is the percentage
of negative or positive patches in Pϕ .

A. Overview of Fanelli et al.’s [27] Approach

Similarly, the regression uncertainty Ur is defined on the
head pose parameters (υ, θ), which are modeled as two inde-
pendent multivariate Gaussian distributions υ ∼ N(μυ , �υ)
and θ ∼ N(μθ ,�θ ). The weighed differential entropy is used
to define the regression uncertainty as

Ur
(P : u1(D)

) =
∑

ϕ∈{L ,R}
wϕ

(

log
(|�υ

ϕ | + |�θ
ϕ |)) (9)

where |�| denotes the determinant of the covariance matrix �.
Note that only positive patches are involved for Ur . We choose
a best u1∗ within the generated pool {u1}, which satisfies

u1∗ =arg min
u1

(

Uc
(P : u1(D))+(

1 − e−d/ω
)

Ur
(P : u1(D)))

(10)

where d is the depth of the current node, and ω controls
the steepness of the weighting function. A leaf of the tree
stores: 1) the percentage of positive patches reaching the leaf
p(λ = 1|P) and 2) the multivariate Gaussian distribution
{p(υ|P), p(θ |P)} for the head pose parameters of these pos-
itive training patches.

In the estimation process, patches are densely sampled from
the depth input and are fed into the Hough forest. Only
those valid patches that have a high probability to be positive
(p(λ = 1|P) > 0.95) are sent to voting for the face position υ
and pose parameter θ . The final detection and pose estimation
result is obtained by leveraging all votes with the mean shift
clustering algorithm.

B. Pose Estimation in the RGB Channel

Face pose estimation from the depth input is less sensitive
to illumination change and clutter background. However, the
depth input also has high noise levels compared with the RGB
input, which degenerate the precision of pose estimation.
To take advantage of the complementary observation from the
RGB input, pose estimation is also performed in the RGB
channel, where a GBDT regression is carried based on the
randomized binary patterns. Mathematically, given the RGB
input I

θ(I ) =
T

∑

t=1

ρht
(

uk
t (I )

)

(11)

where ρ is the learning rate with a fixed value 0.1 for all the
regression stages.

In particular, when the face position is available via face
detection from the depth input, the corresponding RGB input
is cropped, which contains only the face region. In the
training process of head pose regression, the cropped face
regions annotated with pose labels θ are collected, where
θ = (θpitch, θyaw, θroll) represents the face rotation angles along
the X , Y , and Z axes. We use the gray-scale input face patches

Fig. 4. Pose estimation in RGB input using GBDT.

and apply a global illumination normalization as a preprocess-
ing step to reduce the effect of varying illumination. For the
feature selection, we first generate a large pool of randomized
binary patterns {uk

i (·)}F
1 (as shown in Fig. 4). Here, the size

of the rectangles {p0
i , p1

i } is randomized. In particular, the
maximum width and height of the rectangles are kept less
than a fixed scale (0.5 in our experiment) of the width and
height of the cropped face region. At each stage of GBDT
training, we extract the k-dimensional patterns uk, as shown
in Algorithm 1.

In the test stage of the head pose estimation, there are only
some patch comparison and lookup operations for a random
binary pattern uk, as shown in (11). They go through every
stage in the GBDT extremely fast.

The prediction of the pose parameters in the RGB channel
is combined with the one estimated in the depth channel
by weighted summation. The weight of the prediction from
the depth is defined as wd = exp(−trace(|�θ |)/s), where
trace(|�θ |) represents the confidence of the prediction (defined
in Section III-A) and s is a balance factor (s = 900 in our
implementation). The weighted pose estimation takes the form

θ = (1 − wd )θrgb + wdθd (12)

where θrgb and θd are the predictions from the RGB and depth
observations, respectively.

IV. HIERARCHICAL FACIAL LANDMARK LOCALIZATION

In our system, the facial landmark location is also estimated
via regression. Specifically, we apply a hierarchical regression
approach proposed next on the cropped face image. This facial
landmark localization approach works on a cascaded random
binary pattern regression framework, which consists of several
groups of GBDTs, as shown in Fig. 5.

Due to the large changes of head pose and facial expres-
sions, joint regression in the large target space is too difficult
or needs a good initialization. We aim to reduce the image
appearance variations gradually with hierarchical regression.
A similar coarse-to-fine localization scheme is used in [3],
where the rough facial component positions are first detected
and further refined by a detailed face alignment procedure.
There are two levels of facial landmarks in our proposed
approach: 1) face component level and 2) facial landmark
level, which are denoted as s = {sc, sl }. In each level, we
estimate the facial landmark locations using cascaded GBDTs.
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Fig. 5. Hierarchical regression working on a cascaded GBDT framework.

Fig. 6. (a) Facial component level in the hierarchical regression. The red
points are the positions. Green circles roughly indicate the sampling radius
for the correspondent features. (b) Hierarchical configuration for the facial
components and landmarks. A child is described by a displacement vector
(the arrow) from it to its parent component.

A. Facial Component Level

The regression process first works on the component level,
estimating the coarse locations of salient facial parts (e.g.,
eyes, nose, and mouth), as shown in Fig. 6(a). In particular, we
define a hierarchical configuration for the facial components
and landmarks, as shown in Fig. 6(b), instead of estimating
all the facial landmark locations directly.

A parent component from the component level is assigned
to each landmark based on the spatial distribution. We also
define a parent for each facial component, except for the root.
A child is described by a displacement vector from it to its
parent component, so we need to estimate the displacement via
the GBDT regression. We denote the facial component parts
with the parameter sc = {o, ν1, ν2}, where o is the location
of the root component (the left eye in our experiments), ν1 is
the displacement from the right eye to the left eye, and ν2 is
the displacement from the mouth to the right eye [Fig. 6(b)].
The landmark-level facial parameter sl is defined similarly.

With a hierarchical facial landmark configuration, the sam-
pling region of the random binary patterns is constraint to
within the whole face region, as shown by the green circles in
Fig. 6(a). Using of the whole face region for the random binary
patterns sampling makes the facial component regression be
robust to the variation of initial landmarks estimation caused
by the face detection from depth input. The motivation of using
the displacement vectors is that the variations of the relative
positions are much smaller and the shape constraint is encoded
implicitly in this scheme.

Given an input image I and the initial component parameter
estimation s0

c derived from the training procedure, the GBDT

Fig. 7. Left and right images show the same parameter-indexed features.
Red pixel pairs are indexed by homogeneous coordinates (white crosses) of
current estimated components.

regression estimates the component parameter increment �sc,
which is additively merged into sc, as shown in Fig. 5.

At the stage t of GBDT, the random binary patterns are
sampled from the image I with the anchor pointed determined
by the current facial component estimation sc. So, we have

st
c = st−1

c + ht
(

uk
t (I, st−1

c )
)

, t = 1, 2, . . . , T . (13)

In (13), the random binary pattern uk(I, sc) is slightly different
from the previous random binary pattern uk , since a new
control factor sc from the previous stage of regression is
introduced. The similar schemes are used in [23] and [36],
where the pose/shape-indexed features are presented and used
for regression. We define an associated homography matrix for
each facial component and express the sampling pair {p0, p1}
of random binary patterns in homogeneous coordinates, as
shown in Fig. 7.

We take a greedy approach in the training of the GBDT.
At each stage t of the training process, each decision tree is
sequentially trained while minimizing the parameter residual
δsc from the ground truth sgt

c to the estimated value st−1
c from

the previous training stage. The training process is described
in the following steps.

1) Given the training images and their ground truth facial
component locations, take the mean facial component
location as the initial locations.

2) Randomly generate a pool of location-indexed binary
features.

3) Train a GBDT as in Algorithm 1. The input is the pool of
the generated random binary features {u} and the output
is the facial component location residuals.

4) Update the current estimated parameter with the para-
meter increment predicted by the trained GBDT.

5) Repeat Steps 2–4 until the residual is unable to reduce
or the maximum iteration is reached.

B. Facial Landmark Level

GBDT regression is also used in this stage. The training
process for the GBDT in this level is similar to that in the
upper level. The only difference is that the parameter-indexed
random binary features are sampled within a smaller area
(proportional to the distance between neighboring landmarks).
This is to reduce the effect of nonrigid deformation and capture
the features in a more detailed level. The whole procedure of
localization at facial landmark level is shown in Fig. 5.

To get the initial facial landmark locations in a test face, we
use the facial component locations estimated by the upper level
and the mean displacement vectors in the training samples.
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The testing instances go through the pretrained GBDTs and
the landmark locations are obtained.

C. Pose Conditional GBDTs

With the estimated head pose θ , we can compute the
conditional probabilities over the view space and estimate the
landmark locations with conditional view-based GBDTs. We
discretize the orientation space into disjoint sets {�i }. The
Gaussian kernel is employed to estimate the distance d(θ,�i )
between θ and �i

d(θ,�i ) = 1

2πσ 2 exp

(

− ‖θ − ωi‖2

2σ 2

)

(14)

where ωi is the centroid of �i and σ is the bandwidth
parameter. To estimate the landmark locations, we use

u =
∑

�i

u(i)P(θ |�i ) =
∑

�i

u(i)
d(θ,�i)

��i d(θ,�i )
(15)

where u(i) is the landmark locations estimated by the GBDTs
in the �i view space.

V. IMPLEMENTATION AND EXPERIMENTS

We use various databases in the training and testing of
the proposed system. To facility further discussion, we first
introduce these databases briefly. After that, we perform the
experiments in two parts: 1) head pose estimation and 2) facial
landmark localization.

A. Databases

1) BIWI Kinect head pose database [27]: contains
24 sequences of different people recorded while sitting in front
of a Microsoft Kinect camera roughly one meter away. These
people rotate their heads to span all possible orientations.
An offline template-based head tracker is used to label the 3-D
head position and rotation. The range of the rotation angles
is between ±75° for yaw, ±60° for pitch, and ±50° for roll.
The face region in a depth map can be obtained by projecting
the 3-D template to the depth map with the pose parameters.
In addition, depth values over 130 cm are set to zero.

2) Annotated facial landmarks in the wild (AFLW)
database [38]: as its name implies, contains indoor and
outdoor faces with large variations in head pose, lighting, and
makeup. The images are collected from Flickr, an online photo
sharing application. There are up to 21 annotated landmarks
per face, and we choose 11 of them for our experiment. The
landmarks and sample faces are shown in Fig. 8. We obtain
the face bounding boxes from the annotated data and crop the
face. The face images are then rescaled to 150 × 150 pixels.

3) EURECOM Kinect face database [37]: contains facial
RGB-D images of 52 people obtained by Kinect. The data
are captured in two sessions during different time periods. In
each session, the facial images of each person are acquired
in nine states of different expressions, lighting, and occlusion
conditions. Fig. 9 shows some of these images and the labeled
landmarks.

Fig. 8. Example faces of the training data for facial landmark localization.
The left images show the labeled landmarks.

Fig. 9. Example RGB (top row) and depth (bottom row) images, as well as
the labeled landmarks in the EURECOM Kinect face data set [37].

4) B3-D(AC)2 face database [27]: consists of RGB-D face
videos of 14 people, where each person utters a set of
40 sentences in front of a 3-D scanner, both in neutral and
emotional tone. Over 100 K frames are fitted with a dense
generic 3-D face model. By selecting a set of 13 land-
marks on the generic template, we automatically obtain their
3-D locations in the depth images and the corresponding 2-D
projections in the RGB images.

In our implementation, we use the BIWI Kinect head pose
database [27] as our depth training data. The depth training
process for the RF is the same as that in [27]. As for the
GBDT-based head pose estimation, we use the RGB images of
the above database. Before the RGB training process, we crop
the face in an image based on the labeled head center. We
apply some random displacements on the face locations to
improve the robustness of the model. All the training images
are rescaled to 150 × 150 pixels.

The parameters of a GBDT are: the number T of stages,
the generated feature pool size F for training, the feature
dimension k of each decision tree, and the R feature subsets
from which we select the best in each stage. Here, we set
T = 5000, F = 10 000, k = 5, and R = 20 for the following
experiments.

B. Pose Estimation in RGB-D Images

With the head position estimated in the depth map exper-
iment, we crop the face images and run a GBDT to obtain
a head rotation guess. Fig. 10 shows the mean errors of
the three angles in different stages of the GBDT regression.
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Fig. 10. Mean rotation errors with different number of random binary patterns
in the GBDT regression.

It shows that the errors converge quickly after passing through
the 1000th random binary pattern. We compare the accuracy
of the pose estimation results from the depth maps and the
RGB images in Fig. 12. This is to show the performance of
RGB and depth-based methods from different angles, and then
demonstrate the effectiveness of our combination of RGB and
depth input. In Fig. 12(a)–(c), we can observe that the results
from the depth maps are less accurate than those from the RGB
images for the yaw angle. The situation is reversed for the
pitch angle. This is because the face texture decreases quickly
as the pitch rotation increases. In this case, the depth cue is
more useful. As for the yaw rotation, the depth cue does not
have discrimination changes, especially for the noisy signal in
our case. It shows that the results from RGB and depth input
are complementary. In addition, both of the two methods give
good results for the roll angle because the in-plane rotation
can be well represented by both the RGB and depth cues.
Then, we combine the two results and evaluate the overall
accuracy in Fig. 12(d). Here, the rotation error is defined as
the Euclidean distance of the three angle differences when
compared with the ground truth. It shows that the accuracy of
the RGB image-based method is lower than that of the depth
map-based method. However, the result can be improved when
we combine these two methods together.

We also measure the running time of the GBDT regression
with C++ implementation on a desktop PC with a 3.2-GHz
CPU and 4-GB RAM. It takes only 0.55 ms for an image. This
extremely fast performance attributes to the comparison-based
features and the decision tree structure. We should also note
that the time consumption of this stage is negligible compared
with that of the depth map-based approach, which costs about
30 ms in the same platform. That means, we improve the
accuracy of pose estimation with just little extra cost.

To further clarify the effectiveness of the texture cue, we
conduct the GBDT-based method on the depth maps. Similar
to the experiment on the RGB images, we also need to crop the
faces first. For comparison, Fig. 11(a) shows the results from
different options. The GBDT regression on the depth maps
provides more accurate result than on the RGB images. It is
reasonable because the depth cue is more informative as in
the previous experiment (Fig. 12). However, when combined
with the RF approach, the comparison is reversed, as shown
in Fig. 11(b). Note that the combination of the RF and the
GBDTs for the depth map is similar to (12). So, the advantage

Fig. 11. Accuracy of overall head rotation estimation with different options.
(a) Pose estimation from a single regression model. (b) Pose regression from
multiple regression models fusion.

of our combination of the RGB image and depth cues is further
demonstrated.

C. Facial Landmark Localization in RGB-D Images

First, we give a qualitative evaluation on the generalization
ability of the proposed facial landmark localization approach.
We take the AFLW database [38] as the training data and
test on the BIWI Kinect head pose database. The training
configuration is as follows: we use ten GBDTs in each
level; every GBDT contains 500 random binary patterns; the
dimension of each random binary pattern is five. We divide the
training samples into three subsets based on the yaw rotation
and train three GBDTs for the pose conditional estimation.

Fig. 15 shows some of the results in the RGB images from
the BIWI Kinect head pose database. We can see that the
algorithm can deal with cases with different head rotations.
In addition, we add some random occlusions in the frames
and test the algorithm. In these cases, the location accuracy
decreases. However, the landmarks can still be roughly located
in the occlusion areas. This is because the facial shape prior
is encoded in the cascaded regression process, and the partial
occlusion does not destroy the global configuration. The
running time for a face image in the test is about 20 ms.
Together with the head pose estimation and other I/O operation
cost, the system achieves 20 frames/s.

We conduct quantitative evaluation for the accuracy of
facial landmark localization. First, we use the annotations
created in [39], which covers 82 frames in the BIWI database.
We compare our method with that of [1], which uses condi-
tional RF regression to locate facial landmarks in RGB images.
To be fair, here we use the same training data set as [1] and test
on 10 facial landmarks including four eye corners, four mouth
corners, and two nose strips. Fig. 13(a) shows the accuracy
of the two methods. It is demonstrated that our algorithm
outperforms this state-of-the-art technique. With the use of the
depth information, we obtain the head pose information that
can facilitate the landmark localization task. In Fig. 13(b), we
show the performance over the ten GBDTs of facial landmark
level. The accuracy converges with just a few iterations. In
addition, to show the superiority of pose conditional GBDT,
we compute the relative improvement over the single GBDT
and list it in Fig. 13(c). We obtain 2%–16% improvement on
the localization accuracy rate for the ten facial landmarks.



ZHANG et al.: MULTIVIEW FACIAL LANDMARK LOCALIZATION 1483

Fig. 12. (a)–(c) Accuracy of three head rotation estimation methods with different thresholds. (d) Accuracy of the overall head rotation estimation (we define
the angle error as the Euclidean distance to the ground truth).

Fig. 13. (a) Comparison of the accuracy between our method with [1]. The thresholds for computing the accuracy are normalized by the interocular distance.
(b) Accuracy in the facial landmark level over different stages of cascaded GBDTs. The threshold is set to 0.2. (c) Relative improvement of the localization
accuracy with pose conditional GBDT over single GBDT. The improvement is computed as the reduced error normalized by the single-GBDT error.

The facial landmark localization experiment is also per-
formed on B3-D(AC)2. In the experiment, all RGB-D frames
from 14 persons are used for the localization task. At the
head detection and pose estimation stage, 124 520 frames
are successfully detected and used for the facial landmark
localization stage. Since our approach outputs the 2-D fiducial
points, we need to project these locations back to 3-D depth
space for a fair comparison with [31]. For each RGB and
depth image pair, we use the depth and RGB calibration data
provided in B3-D(AC)2 to calculate a pixel-wise registration.
For each localized facial landmark in the RGB image, we find
its depth correspondence and project it back to the 3-D depth
space.

The localization errors from fivefold cross validation are
given in Table I. We notice that there is an obvious perfor-
mance drop on the nose component localization. The main
reason of this phenomenon is that many shadows around nose
regions for most of the samples. Since less discriminative
features can be found within the shadow region for precise
nose localization, it is a good way to rely on the global
face shape constraint for nose localization estimation, as those
done in [31].

For comprehensiveness, we also use the EURECOM Kinect
face database [37] to verify the effectiveness of our hierar-
chical method. We use the same training configuration as in
the previous experiment, and compare the hierarchical and
nonhierarchical versions of our algorithm. The nonhierarchical
algorithm runs in the facial landmark level directly, without the

Fig. 14. Comparison of the accuracy between the hierarchical and nonhierar-
chical methods for facial landmark localization. The thresholds for computing
the accuracy are normalized by the interocular distance.

facial component level. For fairness, the total numbers of the
cascaded GBDTs in both the hierarchical and nonhierarchical
versions are the same (i.e., 20 GBDTs). In Fig. 14, we
can observe that the hierarchical approach outperforms the
nonhierarchical one. In addition, because the regression
dimension in the first hierarchical level is much lower than in
the second level, the hierarchical method can also save much
computation time.
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Fig. 15. Typical facial landmark localization results in the BIWI Kinect head pose database [27]. The last row contains facial landmark localization results
with random partial occlusions.

TABLE I

RESULTS OF FIVEFOLD CROSS VALIDATION ON THE B3-D(AC)2 DATABASE

VI. CONCLUSION

In this paper, we have proposed a robust and real-time
multiview facial landmark localization in RGB-D images. The
localization problem is formulated as a regression problem
and we present a hierarchical approach to deal with the high
dimensional face landmark localization. Different from many
existing methods, the proposed approach estimates both the
head pose and the facial landmark locations sequentially with
a unified regression framework. The experiments show that
the combination of the RGB images and the depth maps
can improve the head pose estimation accuracy. In addition,
the proposed hierarchical pose regression can locate facial
landmarks in the cases of large rotations and partial occlusions,
outperforming the state-of-the-art techniques.
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