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Abstract

Segmentation of brain tissue in magnetic resonance
imaging (MRI) can identify anatomical areas of inter-
est. It has been widely used in medical imaging appli-
cations. In this paper, we propose a new brain MRI
segmentation method, which takes advantage of spa-
tial prior and neighboring pixels affinities. In addition,
the underlying model can naturally describe the par-
tial volume effects. Firstly, the algorithm labels some
pixels based on pixel intensity and spatial prior. The
label information is then propagated from the labeled
pixels to unlabeled pixels with neighboring pixels affini-
ties. Mathematically, the result is obtained by minimiz-
ing a quadratic objective function. In this way, we can
extract different types of brain tissue from MR images
and obtain the segmentation result. Experiments prove
that our method can generate accurate results, which
are comparable to that of the state-of-the-art methods.

1. Introduction

MRI segmentation of brain tissue is widely applied
to identify anatomical areas of interest for diagnosis,
treatment, surgical planning and image registration.
Specifically, the brain tissue segmentation usually refers
to the problem of classifying each pixel (voxel) into one
of the following tissue types: Gray Matter (GM), White
Matter (WM) and Cerebro-Spinal Fluid (CSF). It is an
important topic and attracts much research.

Considerable progress on this problem has been re-
ported in existing literatures. Many existing algorithms
use parametric models to describe the probability dis-
tribution of the tissue features. Mixtures of Gaussians
are usually applied to model the tissue intensity [1, 2].
The parameters of the model can be estimated with
maximum-likelihood or maximum a posteriori tech-

978-4-9906441-1-6 ©2012 IAPR

89

Input brain MRI

Brain extraction

Tissue probabilistic atlases

Registration&
Intensity-based clustering

Some labeled pixels

Soft segmentation of
the tissue

Model partial volume effects &
propagate label information

Figure 1. Flow chart of the proposed method.

nique. However, as the appearance of the brain tissue
is usually complex and the image noise is unavoidable,
the algorithms usually have to estimate sophisticated
models. There are usually many parameters and the re-
sults may be sensitive to the initialization of the param-
eters. To avoid these problems, some algorithms use
non-parametric clustering methods to classify the vox-
els in the feature space. Representative methods include
the use of mean-shift [3]. This kind of methods can
avoid the model assumptions in the parametric methods.
Besides these methods, active contours, level sets and
Markov Random Field [4], are also applied in this prob-
lem. These methods are usually reduced to minimizing
an energy function, which can take account of the tis-
sue homogeneity, shape of the boundary and other prior
knowledge. Recently, learning techniques like support
vector machine and random decision forests are also
employed [5, 6]. Atlases, the segmented images of the
subjects, are also incorporated in the many algorithms
[7, 8]. The segmentation can be reduced to a registration
problem in which the labels in the atlases are transferred
to the target image after the mapping between the at-
lases and the image is determined. The atlases can also
be used to form the probability maps of the tissue, pro-
viding spatial prior to enable automatic segmentation or
improve the robustness of the algorithms.

However, recent algorithms usually aim to capture a
global description of the tissue’s characteristics, which
is difficult as the brain images are complex and the qual-



ity of the local regions in MR1 is strongly affected by the
imperfection of the imaging devices (e.g., noise, bias).
Meanwhile, some algorithms cannot model the partial
volume effects naturally, which is common in MRIL.

In this paper, we propose a new method for brain
tissue segmentation in MRI based on spatial prior and
neighboring pixels affinities. Firstly, the algorithm uses
spatial prior and intensity-based clustering information
to select some pixels and label them as GM, WM, or
CSF. After that, we use a linear combination model to
describe the pixel intensity to capture the partial volume
effects. Under this model, we extract the tissue by prop-
agating the label information to the unlabeled regions
with neighboring pixels affinities, which are based on
a local smoothness assumption. The extraction results
can be obtained by minimizing a quadratic objective
function. Due to the modeling of partial volume ef-
fects, the extraction results are fractional instead of bi-
nary. These soft segmentation results can be treated as
the likelihood that a pixel belonging to a certain tissue
type and we can obtain the final segmentation result.
Fig. 1 shows the flow chart of our proposed method.

2. Methodology
2.1. Labeling pixels based on spatial prior

For the input MRI data, if it contains non-brain struc-
tures, we first conduct brain extraction as preprocessing
(we use brain extraction tool in FSL [9] in current im-
plementation). After that, we need some initial tissue
label information to enable automatic segmentation.

Firstly, we apply a registration step between the MR
brain volume and the tissue probabilistic atlases, to get
the corresponding prior probability maps. In practice,
we carry out this procedure with the SPM8 software
package [10]. Then we can obtain the spatial prior
knowledge of the tissue from the corresponding prior
probability maps (as in Fig. 2). These maps repre-
sent the prior probability of a pixel being GM, WM,
or CSF (i.e., P((x,)IT), T = {GM, WM, CSF}, where
(x, y) is the location of a pixel). Meanwhile, we estimate
tissue intensity probability distribution P(I|T) with the
prior probability maps. Specifically, we simply use his-
tograms to model the distributions (as shown in Fig. 2)
to avoid the limitations of the parametric models. How-
ever, distributions of different tissue types inevitably
overlap partially. This is because the values in the prob-
ability maps change smoothly and are inconsistent with
the details of the tissue’s shape. To represent the more
detailed characteristics, we use intensity-based fuzzy c-
means clustering to softly classify the pixels into GM,
WM or CSFE. So we can obtain the tissue likelihood of
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Figure 2. Top: The brain MRI and the corresponding prior
probability map of GM, WM and CSF respectively. Bottom:
Intensity probability distribution of the above MRI. The el-
lipse indicates that the distributions overlap.
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a pixel i (i.e., P'(Ti)). Combining the spatial prior, tis-
sue intensity distribution and the clustering-based tissue
likelihood, under the Bayes’ rule, we formulate the like-
lihood of a pixel i being tissue T, as:

P(T i) P(Tylli, (xi, yi)
— P(Ii’ (xiayi)|Tm)P(Tm) (1)
Svt P, (i yOIT)P(T,)

where P(I;, (xi, y)|Twm) = P((xi, y)ITm) P(Li|Tr). 1t can
be computed by the spatial prior and tissue intensity
distribution we estimated before. For P(T,,), we use
clustering-based tissue likelihood P’(T,|i). We com-
pute P(T,|i) for every pixel i and tissue m. A pixel is
then labeled as tissue T, if P(T,,|i) > T (we set T = 0.9).

2.2. Modeling partial volume effects

Due to the limited resolution of the images, some
pixels (especially those near the edges), contain ma-
terial from multiple tissue types. To achieve high-
accuracy result, we model the partial volume effects in
our underlying model. By assuming that every pixel i
contains at most two different tissue types, we use a lin-
ear combination model to describe the mixing effects:

2

where «; is the mixing factor. A; and B; are the intensi-
ties of the underlying tissue types. But there are more
than one possible combination of the tissues types. So
we extract GM, WM and CSF respectively instead of
in a simultaneous mode. For example, when we extract
GM, A; is the intensity of GM and B; represent that of
any other tissue. The solution «; is then treated as the
likelihood of a pixel i being GM.

I,' = aiA,' + (1 — a,-)Bi



2.3. Propagating the label information

Equation (2) is under constrained since there are only
one known variable (/;) but three unknown variables
(@i, A;, B;). To solve this equation, we can use the la-
beled pixels as constraints and propagate the label in-
formation with pixels affinities. Specifically, we can as-
sume that the intensity values A and B change smoothly
respectively and keep constant in a small neighborhood.
Under this assumption, Levin et al. [11] derive a cost
function and show that A and B can be analytically elim-
inated and obtain a quadratic cost function in @. By
applying this method, we can obtain a closed form so-
lution of @ with the labeled pixels as constraints. Math-
ematically, under the local smooth assumption, we can
rewrite equation (2) as:

o, ~al;, +bYiew

3
1

where a = —5,b = ,{TBB and w is a small window (e.g.,
3 x 3 neighborhood). To obtain a solution obeying the
smooth assumption, the cost function is as follows:

J(a,a,b) = Zjep (Ziew, (a,- —ajli - bj)2 + eaﬁ) 4

P is the pixel set of the image. w; is a small window
around pixel j. ea? is a regularization term. a and b can
be analytically eliminated from equation (4)[11], yield-
ing a quadratic cost in a:

J(@) = ol La 3)

Here « is treated as a |P|x 1 vector. L is a |P| X |P| matrix
with the (i, j)-th element as:

1 (i = ) U = )
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where 0;; is the Kronecker delta. |wy| is the number
of pixels in this window. 4 and o-% are the mean and
variance of the intensities in the window wy.

Combined with constraints from our labeled pixels,
the objective function can be defined as:

J(@) = a"La + p(a - B D(a - B) @)

Here Bis a |P| x 1 vector. The value is one if the pixel is
labeled as the current target tissue type and zero other-
wise. D is a |P|x|P| diagonal matrix whose elements are
one for labeled pixels and zero otherwise. p is a weight
assigned a relatively large value (e.g., 100).

By minimizing equation (7), we can obtain the value
of @, which can be treated as the likelihood of the pix-
els being the current target tissue type. In this way, we
extract the GM, WM and CSF respectively. After that,
we obtain three tissue likelihood maps (as shown in Fig.
3). Then we can classify a pixel into GM, WM, CSF ac-
cording to its maximum likelihood in these three maps.
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Figure 3. (a) MRI data after brain extraction. (b) — (d) GM,
WM and CSF of our soft segmentation result.

3. Experiments and evaluations
3.1. Test data

We use the dataset from BrainWeb (http://www.bic.
mni.mcgill.ca/brainweb/), which is a simulated brain
database. The advantage of using this dataset in exper-
iments is the availability of a ground truth (gold stan-
dard) for the tissue types from which the MRI data vol-
umes were created. Specifically, the test data in our ex-
periments are six T1-weighted brain MRI volumes. The
volume size is 181 x 217 x 181, with voxel resolution
Immx 1mmx 1lmm. The volumes are combined with ad-
ditive noise ranging from 0% to 9%, and intensity non-
uniformity of 40%. Before the experiments, we remove
the non-brain structures from the test data with the brain
extraction tool in FSL [9].

3.2. Results and evaluations

We compare the results of SPM8 [10], FMRIB’s Au-
tomated Segmentation Tool (FAST) in FSL [9] and the
proposed method with the ground truth of BrainWeb,
and compute the Dice metric to quantify the overlap be-
tween the segmentation results and the ground truth for
each tissue type. Specifically, the Dice metric for tissue
t is defined as: D(1) = 2V, /(V{ + V), where V{ and
V represent the number of pixels (voxels) assigned to
tissue ¢ by the segmentation algorithm and ground truth,
respectively. We select 120 successive slices from each
volume and compute the average Dice overlap on these
slices. The first and last few slices are not selected be-
cause there are few corresponding structures in these
slices for some tissue types. The values of the Dice
overlap may be unstable and affect the statistical anal-
ysis. The experimental results are shown in Fig. 4. In
Fig. 4(a)—(c), we can see that for GM and CSF, results
of our proposed method are more accurate than that of
the other two. For WM, ours performs worse when the
noise increases. This is because when we determine the
initial labeled pixels, we use fuzzy c-means, which is
not robust in noisy slices. There may be not enough la-
beled pixels. Meanwhile we can find that for FAST and
SPMS, results of the volumes with a moderate amount
of noise are better than that of volumes without noise.



—e—SPM8
—e—FAST

08 Proposed
075

—

——SPM8
—e—FAST
95 Proposed

verlap (GM)
o

a2 3
Dice over
o

0.85

Dlice overlap (CSF)

0.6 0.8
0 1 3 5 7 9 0 1 3 5
Noise level (%) Noise level (%)
(a) (b)
—e—SPM8

—e—FAST
Proposed

0.9 r—\ e
0.8
N .
08 . ‘
0 1 3 5 7 9 X
CSF GM WM

Noise level (%
(c) . (d)
Figure 4. (a)—(c) Average Dice overlap metric of the results
from SPMS [10], FAST [9] and the proposed method. The test
MRI volumes are from BrainWeb with different noise levels.
(d) Average Dice overlap with all of the test slices.
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This is also noted in [12] and probably because of the
noise models. In Fig. 4(d) we present the average Dice
overlap of the 720 test slices (6 volumes and 120 test
slices for each volume) with respect to CSF, GM, WM.
It shows that performance of the proposed method is a
little higher than that of the competitors on average.

We also evaluate the results visually. Fig. 5 shows
the WM and GM segmentation results of SPM8, FAST
and our method. Because of the additive noise, all of the
methods cause artifacts. However, in the first row, we
can see that our result is less noisy. In the second row,
there is a tiny amount of WM in the region enclosed
by the red rectangle. The tissue homogeneity is also
affected by the noise. We can see that results of the
three methods can reveal this detail to some extent. Our
result is comparable to that of the other two.

4. Conclusions

In this paper, we propose a novel method for seg-
mentation of brain tissue in MRI. We first label some
pixels based on spatial prior, and then segment the rest
pixels by propagating the label information with the
neighboring pixels affinities. The result can be ob-
tained by minimizing a quadratic objective function.
The main advantage of our method is that the under-
lying model can naturally model the partial volume ef-
fects. The MRI segmentation is reduced to solving this
linear model. Experiments demonstrate that the results
of our method are comparable to that of the state-of-
the-art methods. Currently, we model the pixel affinity
in two-dimension. We may generalize it in the three
dimensional space in the future work.
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Figure 5. WM, GM Ground truth and segmentation results
from SPMS [10], FAST [9], and the proposed method.
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