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Metric Closed-form Learning based Shared Ours Ours*
Avg. MSE 1.26 1.18 0.90 0.82 0.73
Avg. SAD 15.49 15.51 13.65 14.03 12.45
Table 1.  Average MSE and SAD error of different approaches on 
the benchmark of [9]. “Ours*” denotes our approach with the 
trimap expansion method in shared matting [4].  
 
uses pure propagation-based technique. Shared matting uses a 
sampling-based method and optimizes the result with propagation-
based technique. So these algorithms are representative and related 
to our approach. For the first and second images, the background is 
complex and colors of the leaves and fur are close to that of the 
background. All the four approaches cause artifacts. But ours 
performs better because of the learning technique and effective 
sampling method. In the second image, closed-from and learning 
based matting fail in the gaps of the foreground while shared 
matting and ours preserve the details. However, mistakes still arise 
in the regions where colors of the foreground and background 
overlap. For the last image, the foreground is a plastic bag. It is 
difficult to pick out definite foreground samples for the translucent 
object. Learning based and our matting approach can reveal the 
transparency while shared matting produces alpha values much too 
larger. Closed-form matting fails due to the rope (indicated by the 
red arrow in the image) violating the color line model [6].   
 
3.2. Quantitative evaluation  
 
For every approach, the benchmark uses ground truth alpha mattes 
to evaluate the 24 results (8 test images and 3 trimaps for each test 
image in the benchmark). Table 1 lists the average MSEs (mean 
squared error) and SADs (sum of absolute differences) of the 24 
results of different approaches. The average MSE of our approach 
is smaller than other approaches, while the average SAD is just 
larger than that of share matting. However, share matting uses 
trimap expansion [4] as the preprocessing to reduce the unknown 
pixels. So, we also integrate the trimap expansion into our 
approach. The corresponding results are also listed in Table 1 and 
our approach performs best with respect to the two metrics. 

The benchmark can also rank the approaches with respect to 4 
error metrics: SAD, MSE, gradient and connectivity. Detailed 
definitions for the ranks and the latter two metrics can be found in 
[9]. We list the overall ranks in Table 2. The results show that our 
approach performs best on three out of four metrics. Generally, 
approaches combining sampling and propagation based techniques 
produce better results than the pure propagation-based [6,7]. 
However, pure propagation-based approaches perform better on the 
fourth metric. This is mainly because the affinity matrices of the 
propagation-based approaches concentrate on the neighboring 
relations and preserve the connectivity of the foreground object. 

Our approach is implemented in Matlab with LIBSVM 
(implemented in C++) [15] for -SVR. The algorithm runs on a 3.0 
GHz CPU with 2GB RAM. It takes 75 seconds for an image (about 
800 600) in [9] on average. The time spent in LIBSVM is about 5 
seconds per image. 
 

4. CONCLUSIONS 
 
A supervised learning based alpha matting approach is presented in 
this paper. We learn the relations between pixel features and alpha 
values with -SVR. The relations vary in different regions of the 
image. Effective training samples selection method and adaptive 
parameters for SVR are used to improve the learning accuracy. We 

Approach SAD MSE Gradient Connectivity
Ours* 3.2 2.9 3.3 5.4 
Shared [4] 3.4 3.8 3.5 7.9 
Segmentation-based [13] 4.3 4.4 3.5 7.2 
Improved color [3] 4.8 4.8 3.8 5.8 
Shared (Real Time) [4] 5.5 6.3 7.8 9.5 
Learning based [8] 5.8 6 6.6 6.7 
Closed-form [6] 5.9 6.1 6.6 4 
Large kernel [14] 7.3 6.8 7.7 5 
Robust [2] 8 7.6 6.8 9.5 
Random Walk [7] 11.4 11.4 11.4 2.3
Table 2. Overall ranks of the top performing approaches on the 
benchmark of [9] with respect to four metrics. The best results are 
in red. “Ours*” has the same meaning as the one in Table 1. 
 
also smooth the learning result with a matting Laplacian matrix [6]. 
Experiments demonstrate the advantages of our approach in terms 
of accuracy. Future work will include improving the robustness in 
complex scenes and regions with color ambiguity. 
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