978-1-4673-2533-2/12/$26.00 ©2012 IEEE

LEARNING BASED ALPHA MATTING USING SUPPORT VECTOR REGRESSION

Zhanpeng Zhang"?

Qingsong Zhu""

Yaogin Xie'

'Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
*Sun Yat-Sen University, Guangzhou, China

ABSTRACT

Alpha matting refers to the problem of estimating the opacity mask
of the foreground in an image. Many recent algorithms solve it
with color samples or some local assumptions, causing artifacts
when they fail to collect appropriate samples or the assumptions do
not hold. In this paper, we treat alpha matting as a supervised
learning problem and propose a new matting approach. Given the
input image and a trimap (labeling some foreground/background
pixels), we segment the unlabeled region into pieces and learn the
relations between pixel features and alpha values for these pieces.
We use support vector regression (SVR) in the learning process. To
obtain better learning results, we design a training samples
selection method and use adaptive parameters for SVR. Qualitative
and quantitative evaluations on a matting benchmark show that our

approach outperforms many recent algorithms in terms of accuracy.

Index Terms— alpha matting, support vector regression,
foreground extraction, image segmentation

1. INTRODUCTION

Alpha matting aims to softly extract the foreground from an image.
It plays an important role in many image and video editing
operations and has been extensively studied. Formally, in alpha
matting, an input image / is modeled as a linear combination of a
foreground image F and background image B:

I=aF +(1-a)B (D

where a is the opacity mask of the foreground (typically called
alpha matte, like Figure 1d). The alpha value (opacity) of every
pixel ranges from 0 to 1. Equation (1) is underconstrained since o,
F and B on the right-hand side are all unknown. To solve this ill-
posed problem, many recent approaches require additional
constrains from user input. Trimaps and scribbles are the most
common methods (like Figure 1b).

Considerable progress has been made in image alpha matting.
Many existing algorithms use sampling-based or propagation-
based techniques to estimate the alpha values. Sampling-based
techniques analyze nearby labeled pixels [1] or pick out color
samples from the labeled regions to estimate the alpha values [2-5].
Propagation-based techniques obtain the alpha matte by
propagating constrains from the labeled regions to the unlabeled
regions with local assumptions (e.g., local smoothness) [6, 7].

However, there are still some difficulties in alpha matting. For
sampling-based techniques, foreground and background color
samples are sometimes difficult to determine or even not in the
search space (e.g., in translucent objects). Also, some local
assumptions may not always hold and propagation-based
techniques may fail in some cases (like thin structures or gaps). To

2109

&

Figure 1. (a) Input image (b) Trimap (c) Unlabeled region seg-
mentation (d) Alpha matte produced by our approach

avoid these problems, learning based matting [8] estimates a
general model between image colors and alpha values with semi-
supervised learning techniques. Local and global learning
approaches are designed respectively and produce accurate results
in many cases. However, the local learning approach is
propagation-based style with a matting Laplacian matrix based on
learning techniques. Errors occurred in the learning process may
accumulate quickly. Global learning approach works well in slim
unlabeled regions, but in coarse trimaps the results deteriorate [8].

To overcome these difficulties, we treat alpha matting as a
supervised learning problem and propose a new alpha matting
approach. Our goal is to learn the relations between pixel features
and alpha values, instead of using color samples or local
assumptions directly. Different from [8], we segment the unlabeled
region into pieces and train a feature-a model for each piece using
support vector regression. The segmentation algorithm and the
order of training for these pieces are designed in a way that can
reduce the accumulative errors. Training samples are selected from
trimap or previously estimated pixels by similarity measurement.
Adaptive parameters for SVR are adopted to improve the accuracy
of the models. Experiments on the matting benchmark provided by
Rhemann et al. [9] verify that the proposed approach produces
more accurate results than many recent algorithms.

2. PROPOSED APPROACH
2.1. Unlabeled region segmentation

Usually nearby pixels have similar characteristics. Independently
training a feature-oo model for every pixel causes much redundant
work. So nearby pixels can share a model. Unlabeled region
segmentation algorithm aims to divide the unlabeled region into
small pieces and decide the order of training models for these
pieces. Because our approach uses previously estimated pixels as
training samples, accumulative errors are unavoidable. An

ICIP 2012



appropriate order should make good use of labeled pixels in the
trimap. So starting from the slim regions of the trimap can reduce
the accumulative errors. The segmentation algorithm is as follows:

Algorithm 1 Unlabeled region segmentation
F,B,U denote the foreground, background and unlabeled region in
the trimap respectively. 7 is a parameter (we set r = 30 pixels).
Pieces (pixel sets) P, (m > 0) are the segmentation results.
1: Find the largest connected component F; of F.
2: For every pixel p € U, compute Dg (p) = mingez, S(p,q),
Dg(p) = mingeg S(p, q), where S(+) denotes spatial distance.
3: Let U = {p1,p2 P --Dn}- All pixels p in U are sorted by
D(p) = D, (p) + Dg(p) , in ascending order.
4: Set p € Py forallp € U and m = 0.
5. fort=1toN
6 if pe € Py
7: continue;
8:
9
0

end

m=m+1;

Find all pixels p € Py with S(p,, p) <71. Set p &P, ,p €
P and 0(Py,) = pe.

11: end for

Segmentation results P,,,(m > 0) are circular or fan-shaped pieces
as illustrated in Figure lc. The subscript m represents the order to
train models for these pieces. In line 1 of Algorithm 1, we find the
largest connected component of F and ignore the rest. This is
because in the trimap, users may add some small scribbles besides
the largest one, but the foreground samples in these regions are
usually not enough. O(+) in line 10 is defined for later use.

2.2. Model training for an unlabeled piece

2.2.1. Support Vector Regression

Support vector machine was originally introduced as a classifier
based on the structural risk minimization principle. Its basic idea is
to find the optimal hyperplane for data classification, so that the
hyperplane has the largest distance to the nearest training samples
of any class. Kernel trick is applied to make the data linearly
separable by implicitly mapping them to a higher dimensional
space. In [10], SVM classifier is used in image matting to provide
discriminative information of foreground and background.
Differently, we use e-SVR [11], which is an extension of SVM for
regression problems. Moreover, our approach is learning based and
&-SVR is applied to train feature-o models. Given a training set
{(x1, ¥1), (x2, ¥2)...(x;, ¥)} (x; is input vector and y; is output sca-
lar), e-SVR can be formulated as a convex optimization problem:

||w||2 + CZ<<'1+<1
y (w,x)—b<s+€1

w,x)+b—y; se+§ 2
giifi* =0
The regression function is:
y={wx)+b 3)

(-) denotes inner product. The second term of the objective
function in (2) represents the soft margin with C as the penalty
parameter and & &" as the slack variables. w is the normal vector of
the objective hyperplane while ¢ is the largest deviation without
penalty. This convex optimization problem can be solved in its
dual form obtained by utilizing Lagrange multipliers [11].

2110

Unlabeled
region :
1

Figure 2. An illustration of candidate samples collection.

2.2.2. Features selection

Colors and color gradients are selected as the pixel features.
Specifically, we use CIELAB color space with each component
scaled in [0, 255]. For a pixel p, we define the features vector x,, =
{lp, ap,bp,gxé,,gxg, gxg,gyé,gyg,gy{,’}. /, a, b denote the color
components in CIELAB space. gx, gy represent the gradients of
color components in horizontal and vertical directions. Gradients
are selected in order to represent texture features.

2.2.3. Training samples selection

For an unlabeled piece, our goal is to obtain training samples
which are similar to the unlabeled pixels and represent both local
foreground and background characteristics. We first collect
candidate samples from the trimap and previously estimated pixels,
and then select the best candidate samples with specific criteria.

Candidate samples collection. Given the current unlabeled piece
P, two empty sample sets A and B (i.e., |A| = 0,|B| = 0), the
collection method can be described as the following steps (also
illustrated in Figure 2):

® Step 1. Define the smallest rectangle R that can enclose P (like
the small green rectangle in Figure 2).

® Step 2: For every labeled pixel i newly enclosed by R, if a; =
0.5 and |A| < A|P|, then i € A, else if a; <0.5 and |B| <
A|P|, theni € B.

o Step 3: If |A| = A|P| and|B| = A|P|, turn to step 4, else in-
crease the width and height of R by one pixel and go back to
step 2.

® Step 4: Shot 2n rays from O(P) (like the blue pixel in Figure 2)
with the length of . The rays are separated by the equal
angle 6 = g Add labeled pixels on the rays to A if their alpha

values = 0.5, to B if their alpha values < 0.5.

A, n, 1 are parameters. We set A=1.3, n = 6, n =300 in experiments.
Pixels in A U B are then treated as candidate training samples.
Using an expanding rectangle to collect nearby samples can avoid
spatial distance calculation between pixels, which is computation-
intensive. We also collect samples on the rays because sometimes
similar pixels do not fall in nearby labeled regions.

Samples selection. We define H(p, q) to measure the similarity
between an unlabeled pixel p in P and a candidate sample g:

H(p, CI) = E(xp' xq) + pE ((pxr py): (qx' Qy)) 4

where E (+) denotes the Euclidean distance between two vectors. p
is a weighting factor (we set p = 0.8). Subscripts x and y denote
horizontal and vertical coordinates respectively. Specially, before
computing H(-), all features and coordinates of the pixels in
PUAUB are normalized to [0,1]. We then select training
samples in A U B for pixels in P by the similarity measurement.
For every pixel in P, we select m most similar pixels and m most
dissimilar pixels as the training samples (m is a small
parameter and we set m = 3). This is because we want to obtain



Learning results
Figure 3. Results before and after post-processing.

Images After post-processing

samples similar to P while preserving the comprehensiveness. All
the selected pixels for P are treated as the training samples after we
remove the redundant. In addition, we assign a value V(-) to every
pixel in P, measuring the confidence of the alpha value estimated
with these training samples. The confidence values are computed
for later use and formulated as:

V(p) = exp {—wyHypin(p) —w,D(0(P))} )

where Hy,i, (p) = mingequzs H(p, q). w; and w; are parameters for
normalization (e.g., 5 and 0.005 respectively).

2.2.4. &-SVR training
We train a feature-a model using e-SVR with the radial basis
function (RBF) kernel:

k(xixy) = exp{ =[x = 5" /207} ©

where ¢ is a parameter (also called the kernel width) affecting the
similarity measurement between two input vectors. Inappropriate
selection of parameter g, as well as C and ¢ in e-SVR, will cause
underfitting or overfitting problems as these parameters affect the
model’s generalization performance [12]. So we select these
parameters adaptively. Let the training sample set be 7. M is a set
containing the Euclidean distance between every two features
vectors in P U T. o is set to the variance of M. For the penalty
parameter C, we follow the method in [12] and compute C by:

C = max(|a + 37|, |@ — 37|) (7)

where @ and 7 are the mean and standard deviation of the alpha
values of 7. As the alpha values range from 0 to 1 and ¢ affects
the precision of the model, we set

£ = 0.05 + min (0.05,1‘/1n|7|/|7|) 8)

which is a combination of the method in [12] and our specific
problem. Then we train the feature-a model using these parameters.
After that, alpha values for P can be estimated by the regression
function. All the other pieces are modeled through this method and
we obtain the learning result.

2.3. Post-processing

Although nearby pixels share a feature-a model, roughness may
still arise in smooth regions (like the hair in Figure 3b). This is
partly because spatial information (e.g., coordinates) is not in-
volved in the training process. So after learning the alpha values
for all unlabeled pixels, we adopt the post-processing method like

2111

Zoom in
(from left
to right)

Images Ours

form [6] based [7]
Figure 4. Qualitative comparisons among the results of different
approaches. The red rectangles indicate the differences.

[3-5], combining the learning result & with the matting Laplacian
matrix L of [6], which can be treated as a smoothness term. The
final alpha matte is obtained by minimizing the function:

J(@) =aTLa+ p(a — &)TY(a — &)
+wla—a)T(a—a) 9)

where ¢ and w are parameters for weighting and normalization. ¢
is relatively large (e.g., 100) while w is small (e.g., 0.1). @ and
@ are treated as N X 1vectors. N is the number of unlabeled pixels
in the trimap. ¥ and I" are N X N diagonal matrices. Diagonal
elements in ¥ are one for labeled pixels in the trimap and zero for
the others. Diagonal elements in I" are the confidence values V(+)
for unlabeled pixels in the trimap and zero for the others. In
practice, the foreground in matting usually can be treated as a
connected entirety. So, in the matte of &, we select connected
components with area less than 1% of the area of the largest one
(like the regions indicated by the blue arrows in Figure 3e), and set
V(-) of the pixels in these components to zero. That means, for
these pixels, the alpha values are determined by the smoothness
term. Figure 3 illustrates the effects produced by post-processing.

3. EXPERIMENTS AND EVALUATIONS

In the experiments, we compare the proposed approach with the
state-of-the-art matting algorithms on the matting benchmark
provided by Rhemann et al. [9]. The online benchmark has 8
natural test images and 3 different trimaps for each test image.
Results of many recent image matting algorithms are available on
website of the benchmark (www.alphamatting.com).

3.1. Qualitative evaluation
Figure 4 shows some cropped images in the benchmark and alpha

mattes produced by closed-form matting [6], learning based mat-
ting [8], shared matting [4] and our approach. Closed-form matting



Metric ~ Closed-form Learning based Shared Ours Ours*
Avg. MSE 1.26 1.18 090 0.82 0.73
Avg. SAD 15.49 15.51 13.65 14.03 1245

Table 1. Average MSE and SAD error of different approaches on
the benchmark of [9]. “Ours*” denotes our approach with the
trimap expansion method in shared matting [4].

uses pure propagation-based technique. Shared matting uses a
sampling-based method and optimizes the result with propagation-
based technique. So these algorithms are representative and related
to our approach. For the first and second images, the background is
complex and colors of the leaves and fur are close to that of the
background. All the four approaches cause artifacts. But ours
performs better because of the learning technique and effective
sampling method. In the second image, closed-from and learning
based matting fail in the gaps of the foreground while shared
matting and ours preserve the details. However, mistakes still arise
in the regions where colors of the foreground and background
overlap. For the last image, the foreground is a plastic bag. It is
difficult to pick out definite foreground samples for the translucent
object. Learning based and our matting approach can reveal the
transparency while shared matting produces alpha values much too
larger. Closed-form matting fails due to the rope (indicated by the
red arrow in the image) violating the color line model [6].

3.2. Quantitative evaluation

For every approach, the benchmark uses ground truth alpha mattes
to evaluate the 24 results (8 test images and 3 trimaps for each test
image in the benchmark). Table 1 lists the average MSEs (mean
squared error) and SADs (sum of absolute differences) of the 24
results of different approaches. The average MSE of our approach
is smaller than other approaches, while the average SAD is just
larger than that of share matting. However, share matting uses
trimap expansion [4] as the preprocessing to reduce the unknown
pixels. So, we also integrate the trimap expansion into our
approach. The corresponding results are also listed in Table 1 and
our approach performs best with respect to the two metrics.

The benchmark can also rank the approaches with respect to 4
error metrics: SAD, MSE, gradient and connectivity. Detailed
definitions for the ranks and the latter two metrics can be found in
[9]. We list the overall ranks in Table 2. The results show that our
approach performs best on three out of four metrics. Generally,
approaches combining sampling and propagation based techniques
produce better results than the pure propagation-based [6,7].
However, pure propagation-based approaches perform better on the
fourth metric. This is mainly because the affinity matrices of the
propagation-based approaches concentrate on the neighboring
relations and preserve the connectivity of the foreground object.

Our approach is implemented in Matlab with LIBSVM
(implemented in C++) [15] for e-SVR. The algorithm runs on a 3.0
GHz CPU with 2GB RAM. It takes 75 seconds for an image (about
800x600) in [9] on average. The time spent in LIBSVM is about 5
seconds per image.

4. CONCLUSIONS

A supervised learning based alpha matting approach is presented in
this paper. We learn the relations between pixel features and alpha
values with e-SVR. The relations vary in different regions of the
image. Effective training samples selection method and adaptive
parameters for SVR are used to improve the learning accuracy. We

2112

Approach SAD MSE Gradient Connectivity
Ours* 3.2 2.9 33 5.4
Shared [4] 34 3.8 3.5 7.9
Segmentation-based [13] 4.3 4.4 3.5 7.2
Improved color [3] 4.8 4.8 3.8 5.8
Shared (Real Time) [4] 5.5 6.3 7.8 9.5
Learning based [8] 5.8 6 6.6 6.7
Closed-form [6] 5.9 6.1 6.6 4
Large kernel [14] 7.3 6.8 7.7 5
Robust [2] 8 7.6 6.8 9.5
Random Walk [7] 114 114 11.4 2.3

Table 2. Overall ranks of the top performing approaches on the
benchmark of [9] with respect to four metrics. The best results are
in red. “Ours*” has the same meaning as the one in Table 1.

also smooth the learning result with a matting Laplacian matrix [6].
Experiments demonstrate the advantages of our approach in terms
of accuracy. Future work will include improving the robustness in
complex scenes and regions with color ambiguity.

5. REFERENCES

[1] Y.Y. Chuang, B. Curless, D.H. Salesin, and R. Szeliski, “A
bayesian approach to digital matting,” CVPR, pp. 264-271,
2001.

[2] J. Wang and M.F. Cohen, “Optimized color sampling for ro-
bust matting,” CVPR, pp. 17-22, 2007.

[3] C. Rhemann, C. Rother, and M. Gelautz, “Improving color
modeling for alpha matting,” BMVC, pp. 1155-1164, 2008.

[4] E.S.L Gastal and M.M Oliveira, “Shared sampling for real-
time alpha matting,” Computer Graphics Forum, vol. 29, no.
2, pp. 575-584, 2010.

[5]1 K. He, C. Rhemann, C. Rother, X. Tang, and J. Sun, “A global
sampling method for alpha matting,” CVPR, pp. 2049-2056,
2011.

[6] A. Levin, D. Lischinski, and Y. Weiss, “A closed form solu-
tion to natural image matting,” CVPR, pp. 61-68, 2006.

[7] L. Grady, T. Schiwietz, S. Aharon, and R. Westermann, “Ran-
dom walks for interactive alpha-matting,” VIIP, pp. 423-429,
2005

[8] Y. Zheng and C. Kambhamettu, “Learning based digital mat-
ting,” ICCV, pp. 889-896, 2009.

[9] C. Rhemann, C. Rother, J. Wang, M. Gelautz, P. Kohli, and P.
Rott, “A perceptually motivated online benchmark for image
matting,” CVPR, pp. 1826-1833, 2009.

[10] T. Hosaka, T. Kobayashi, and N. Otsu, “Image matting based
on local color discrimination by SVM,” Pattern Recognition
Letters, vol. 30, pp. 1253-1263, 2009.

[11] A.J. Smola and B. Schoélkopf, “A tutorial on support vector
regression,” Statistics and Computing, vol. 14, no. 3, pp. 199-
222,2004.

[12] V. Cherkassky and Y. Ma, “Practical selection of SVM
parameters and noise estimation for SVM regression,” Neural
Networks, vol. 17, 113-126, 2004.

[13] C. Rhemann, C. Rother, P. Kohli, and M. Gelautz, “A spa-
tially varying PSF-based prior for alpha matting,” CVPR, pp.
2149-2156, 2010.

[14] K. He, J. Sun, and X. Tang, “Fast matting using large kernel
matting Laplacian matrices,” CVPR, pp. 2165-2172, 2010.

[15] C.C. Chang and C.J. Lin, “LIBSVM: A library for support
vector machines,” ACM Trans. Intelligent Systems and Tech-
nology, vol. 2, no. 3, pp. 1-27, 2011.



