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Abstract: Dynamic video segmentation is an important research topic in computer vision. In this paper, we present a novel recursive
Kernel Density Learning framework based video segmentation method. In the algorithm, local maximum in the density functions is
approximated recursively via a mean shift method firstly. Via a proposed thresholding scheme, components and parameters in the
mixture Gaussian distributions can be selected adaptively, and finally converge to a relative stable background distribution mode. In the
segmentation, foreground is firstly separated by simple background subtraction method. And then, the Bayes classifier is introduced to
eliminate the misclassifications points to improve the segmentation quality. Experiments on a series of typical video clips are used to
compare with some previous algorithms.
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1. Introduction

Motion segmentation is an important processing step in
many computer vision and video processing tasks, such as
object tracking, video surveillance, information retrieval,
and video coding. In video surveillance, detection of mov-
ing objects from a video sequence usually play a very cru-
cial role for the success of object tracking, video segmen-
tation, and behavior understanding. Motion detection aims
at segmenting foreground regions corresponding to mov-
ing objects from the background. Although a lot of classic
moving object segmentation algorithms such as [1-6] have
been proposed for different applications, a popular tech-
nology in the existing video surveillance systems is back-
ground subtraction, which extracts moving objects in an
image sequence captured from a static camera by compar-
ing each coming frame with a background model. A cru-
cial step of this technique is to obtain a stable and accurate
background model. A lot of literature about video segmen-
tation has been directed to the issue of constructing a ro-

bust and accurate background model. The usual algorithm
to moving object detection is through background subtrac-
tion, which consists in maintaining an up-to-date model of
the background and detecting moving objects as those that
deviate from such a model.

There is no unique classification of proposed meth-
ods, existing algorithms for background modeling may be
classified as a lot of categories from different viewpoints
and different application layers. Some usually referred di-
chotomies, here cited in order to highlight advantages and
tradeoffs of most existing methods, include the following.
*

• Pixel-based vs Region-based:

Pixel-based methods [7-9] assume that the time series of
observations is independent at each pixel, while region-
based methods [10-12] take advantage of interpixel rela-
tions, segmenting the images into regions or refining the
low-level classification obtained at the pixel level. This
step obviously increases the overall complexity.
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• Unimodal-based vs Multimodal-based:

Basic background models assume that the intensity values
of a pixel can be modeled by a single unimodal distribution
[7]. Such models usually have low complexity. But cannot
deal with moving backgrounds, while this is possible with
multimodal models [8-9], which are at the price of higher
complexity.

• Predictive-based vs Nonpredictive-based:

Predictive-based methods model the scene as a time se-
ries and develop a dynamical model to recover the cur-
rent input based on past observations. The magnitude of
the deviation between the predicted and actual observa-
tions can then be used as a measure of change. Predictive
mechanisms of varying complexity have been considered
in many literatures [13-14], which have used a Kalman fil-
ter based approach for modeling the dynamics of the state
at a particular pixel. While nonpredictive-based methods
neglect the order of the input observations and build a
probabilistic representation of the observations at a par-
ticular pixel. there are also a number of literatures [7,15-
16],[9,17-18,24] are proposed in recent years. in [7,15-16],
a Single Gaussian Model (SGM) is considered to model
the statistical distribution of a background pixel. In [9,17-
20,24], Gaussian Mixture Model (GMM) is used to model
some visual properties in traffic surveillance applications.
The Expectation Maximization (EM) algorithm is usually
used, which although optimal, is computationally quite ex-
pensive. GMM approach is capable of dealing with mul-
tiple hypothesis for the background and can be useful in
scenes such as waving trees, escalators, rain or snow.

• Parametric-based vs Nonparametric-based:

Parametric models [7] are tightly coupled with underly-
ing assumptions, not always perfectly corresponding to the
real data, and the choice of parameters can be cumber-
some, thus reducing automation. On the other hand, non-
parametric models [8], [12] are more flexible but heavily
dependent.

• Recursive-based vs Nonrecursive-based:

Nonrecursive-based algorithms [11, 21-22] store a buffer
of a certain number of previous sequence frames and esti-
mate the background model based on the temporal varia-
tion of each pixel within the buffer. While recursive-based
approaches [7], [9] recursively update a single background
model based on each new-coming frame, in [7], the back-
ground well adapts to eventual variations, but memory re-
quirements can be significant. In [9], although space com-
plexity is lower, the input frames from instant past can
have an effect upon the current background, and, there-
fore, any error in the background model is carried out for
a long time period.

Based on the previous research work of the academic
community, some classic and representative video segmen-
tation algorithms have been summarized in previous works
and published literatures for various applications, such as

Gaussian Mixture Model (GMM) [9, 24], non-parametric
Kernel Density Estimation (NKDE) [25], and Sequential
Kernel Density Approximation (SKDA) [29] etc. Segmen-
tation of video has been a classical research topic in in-
telligent surveillance and many other computer vision do-
mains. The aim of the proposed method in this paper is to
obtain a robust background distribution by a new back-
ground modeling method called Recursive Kernel Den-
sity Learning. In the algorithm, mean shift method is used
to approximate the local maximum values of the density
function firstly. Via a proposed thresholding scheme, com-
ponents and parameters in the mixture Gaussian distribu-
tions can be determined adaptively, and finally converge
to a relative stable background distribution mode. Firstly
foreground is separated by background subtraction method.
And Bayes classifier is used to eliminate the misclassifica-
tion image points and refine the segmentation result.

The paper is organized as follows. In section 2, we
present a fairly compact overview of existing approaches
adopted for background subtraction. Section 3 describes
the proposed video segmentation algorithm. Experimental
results on a series of real video chips and the compari-
son with traditional algorithms are presented in section 4.
Conclusions and future research directions can be found in
section 5.

2. Related work

In the classical GMM method, the model parameters for
each Gaussian model are updated using an online EM to
represent the background changes [24-26]. And it has been
proved effective to deal with dynamic scenes like swaying
trees, water waving and ambient light changes. In [24], a
kernel-based function is employed to represent the color
distribution of each background pixel. The kernel based
distribution is a generalization of GMM which requires
no assumptions to the underling distribution as well as the
parameter estimation. In [27], the distribution of temporal
color variations is used to model the spectral feature of the
background and its update. In [28], the motion informa-
tion is used to model the dynamic scenes. However, GMM
based methods are usually subject to their huge compu-
tation and low convergence speed and thus makes them
impractical for real-time segmentation tasks. In addition,
the detection of moving objects with fast or slow speed
is also unsatisfied. To overcome these disadvantages, non-
parametric Kernel Density Estimation (NKDE) [25] is pro-
posed. It utilizes the nearest historical samples and ker-
nel density prediction to obtain background density func-
tion estimation. And then the function is used to compute
probability values of the new observed samples and de-
cide it is background or foreground. The NKDE method
has the advantage of demanding no assumption of Gaus-
sian model and flexible to dynamic variation of compli-
cated density function. However, the NKDE method de-
mands huge computation cost and storage space for his-
torical samples. In recent years, a new model which calls
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Sequential Kernel Density Approximation (SKDA) [29] is
proposed. It utilizes mixture Gaussian Distribution whose
components and parameters can vary adaptively to approx-
imate each peak value location in the density functions.
Compared with GMM and NKDE models, SKDA model
can accurately represent complicated distribution functions.
Moreover, the number of mixture Gaussian components
can also be adjusted adaptively as well as the correspond-
ing parameters. In addition, this model also outperforms
in computation complexity and memory requirement vs.
GMM and NKDE.

3. Proposed method

3.1. Modeling and update of background

Denotepi(i = 1, 2, . . . , m) to a set of means of Gaussians
in Rl andCi refers to a symmetric positive definitel × l
covariance matrix which is associated with corresponding
Gaussian functions. Each Gaussian function is associated
with a weightedωi and

∑m
i=1 ωi = 1. The probability den-

sity function of each pixel pointp is given by:

gt(p) =
1
m
·

m∑

i=1

‖Ci‖−1/2ωiexp
(
− 1

2
[M(p,pi,Ci)]2

)

(1)
where

M(p,pi,Ci) =
√

(p− pi)T C−1
i (p− pi) (2)

indicates the Mahalanobis distance fromp to pi. Proba-
bility density atp can be obtained as the sum of the av-
erage of weighted mixture Gaussian densities, which are
centered atpi and having the common covariance matrix
Ci.

Suppose the initial background Gaussian distribution
hasm Gaussian components. In order to find alln(n ¿
m) local maximum values in the distribution to be esti-
mated, the classical variable-bandwidth mean shift algo-
rithm is introduced as:
msv(p) =
( m∑

i=1

ζi(p)C−1
i (p)

)−1( m∑

i=1

ζi(p)C−1
i (p)pi

)
− p (3)

whereC−1
i (p) =

∑m
i=1 ωi(p)C−1.

ζi(p) =
ωi · ‖Ci‖−1/2 · exp

(− 1
2D2(p,pi, Ci)

)
∑m

i=1 ωi · ‖Ci‖−1/2 · exp
(− 1

2D2(p,pi, Ci)
)
(4)

p = p + msv(p) (5)

And ζi(p) satisfies
∑m

i=1 ζi(p) = 1. Hessian matrix is
used to as the stop function as:
H(p) = (∇T∇)ĝt(p) =

C−1
i

(
(pi − p)(pi − p)T −Ci

)
C−1

i g̃t(p)×
1

(2π)d/2

m∑

i=1

‖Ci‖−1/2ωiexp

(
−1

2
M2(p,pi,Ci)

)
(6)

The estimated covariance matrix is given by:

Ĉi =
ω̂

2/(d+2)
i

|2π(−H−1
i (p̂i))|1/(d+2)

H−1
i (p̂i) (7)

Repeating (3)-(5) until background initial mode converged
to the only stable point in Equation (1). Now, it must be de-
termined which other modes converge toSleft and should
be merged withpnew

t+1 The candidates that converge toSleft

are determined by mean-shift algorithm. And this proce-
dure is repeated until no additional candidate converges to
Sleft. The first candidate mode is the convergence point
Smiddle of pnew

t+1 in the density function:

gN
t+1 ← gt+1(p)−N(ω∗i , Smiddle, C

new
t+1 ) (8)

Note that all the candidates are one of the components in
previous density function̂gt(p). The Mean-Shift Search
Algorithm (MSSA) is performed forSmiddle in gnew

t+1 and
for Sright in gt+1(p):

Smiddle ← MSSA
[
gnew

t+1 (p),pnew
t+1

]
(9)

Sright ← MSSA [gt+1(p), Smiddle] (10)

If the convergence point ofSmiddle andSleft are not
equal, we can draw a conclusion that there are no further
mergence withpnew

t+1 and create a Gaussian for the merged
mode. Otherwise, the next candidate can be determined by
finding the next convergence point ofpnew

t+1 in the density
function:

gN
t+1 ← gt+1(p)−N(ω∗i , Smiddle, C

new
t+1 ) (11)

The covariance matrix and the weight of the merged
mode should also be updated accordingly. If this condi-
tion is satisfied, all the n sample points (n ¿ m) which
converge to that location should be approximated with a
single Gaussian functionN(ωk, µk, Σk) centered at the
convergence location, whereµk is a local maximum and
Σk is obtained by the curvature in the location which ap-
proximates the peak value. The weightωk of each Gaus-
sian is equal to the sum of the kernel weights of the data
points that converge to the maxima of background initial
mode. Suppose background probability density distribu-
tion model consisted withm Gaussian distributionsN(ωk,
µk, Σk)m

k=1 atpk(k = 1, 2, . . . ,m). Start from the second
frame, the new frame is used to update the background dis-
tribution model. When the new samplepnew

t+1 is available,
probability density function of the sample point computed
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at image pointpnew
t+1 can be changed to:

gt+1(p) =
α

(2π)d/2
×

m∑

i=1

‖Ci
t‖−1/2ωi

t × exp

(
−1

2
[
Mt(pt,pi

t,C
i
t)

]2)
+

(1− α)
(2π)d/2

×
m∑

i=1

‖Ci
t+1‖−1/2ωi

t+1 ×

exp

(
−1

2
[
Mt+1(pt+1,pi

t+1,C
i
t+1)

]2)

(12)

where

Mt(pt,pi
t,C

i
t) =

√
(p− pi)T C−1

i (p− pi) (13)

Mt+1(pt+1,pi
t+1,C

i
t+1) =√

(p− pnew
t+1 )T (C−1)new

t+1 (p− pnew
t+1 ) (14)

If the new sample successfully matches with thejth distri-
bution of the m background density distribution, then we
can merge the new sample into thejth distribution. The
matching criterion is described as:

|pnew
t+1 − µj,t| ≤ ε · σj,t (15)

where ε is a decision factor. And then this distribution
will perform corresponding update including mean, vari-
ance and weight. The rest of background density distribu-
tions remain unchanged. If the matching fails, a new Gaus-
sian distributionN(εm+1, µm+1, Σm+1) is produced. The
flow chart of the background modeling and update algo-
rithm for individual pixel is as shown in Fig. 1.

3.2. Segmentation and refinement of foreground

Foreground can be obtained by subtracting the segmented
background firstly. However there still exist a lot of mis-
classification points. In order to improve the final segmen-
tation quality, Bayes classifier [9] is introduced in this work.
It has been proved that, in natural scenes, a pixel is more
likely to be foreground if most of its neighboring pixels be-
long to foreground, and vice versa. Consider 8-neighbors
around image pointX = (x, y) and a n-dimensional fea-
ture vectorvt extracted from the positionX at timet from
the image sequence, prior probability ofX can be formu-
lated as:

PX(fg) =
1
N
· exp{− [φnvB + φdgC]} (16)

whereN is a normalization term,φnv and φdg indicate
the number of background pixels in the horizontal/vertical
and diagonal neighborhood respectively,B andC are the
corresponding penalty coefficients. WithPX(fg) and the

foreground likelihoodPX(vt|fg), using the Bayes classi-
fier theory, pixelX will be classified as foreground if :

2PX(vt|fg)PX(fg) > T (17)

whereT is a fixed threshold. OtherwiseX is classified as
background. LetTa denoteT/PX(fg), then the inequality
(17) can be rewritten as:

2PX(vt|fg) > Ta (18)

ThenTa becomes an adaptive threshold determined byT
and the prior probabilityPX(fg). It can be further ex-
pressed as the following equation:

Ta = T ×⌈
PX(fg) +

(
1− median

0≤φhv≤4,0≤φdg≤4
[PX(fg)]

)⌉−ε

(19)

whereε is a balance factor. Note that, in order to measure
the number ofφnv andφdg, the four neighbors in the four
corners of the 8-neighbors are determined using the fixed
thresholdT , while the remaining neighboring pixels are
determined using their adaptive thresholdTa.

4. Experiment results

The algorithm starts with following initial parameters: We
conduct a series of experiments on two typical video clips:
Waving Trees (160*120) and Walking Man (384*288). The
two test sequences all contain some changing background
like swaying trees and much worse lighting conditions etc.
The system is running on a P4-2GHz desktop with 1GB
RAM. The algorithm is also compared with GMM, NKDE
and SKDE and the results are as shown in Fig. 2.

In Fig. 2, the first column is the original video frames,
the 2nd column shows the background modeling result via
our proposed method, the 3rd, 4th, 5th and 6th columns
displayed the foreground segmentation results by GMM,
NDKE, SKDE and Our proposed method respectively. In
comparison, the proposed method outperforms in dynamic
scenes (swaying trees and much worse lighting conditions)
and also gives better segmentation results. The computa-
tion time for Waving Trees video sequences is 0.48, 0.52,
0.36 and 0.29 s/frame, respectively; for Walking Man video
sequences it is 0.32, 0.37, 0.21 and 0.15 s/frame. It is clear
that the computation time of our proposed method is more
efficient. In addition, the convergence speed of background
modeling changes with respect to the frame is provided in
Fig. 3. We can see that the extracted background by our
method converges quickly to a constant (around the 280th,
310th frame for Waving Trees and Walking Man, respec-
tively) compared with GMM, NKDE and SKDE.

5. Conclusion and future work

This paper presents a novel recursive kernel density learn-
ing framework for dynamic video segmentation. Mean shift
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Figure 1 Workflow of the background modeling algorithm.

method is used to approximate the peak values of the den-
sity function recursively. Components and parameters of
mixture Gaussian distribution are adaptively selected via
a proposed scheme and finally converge to a relative sta-
ble background distribution. In the segmentation, firstly
foreground is separated by simple background subtraction
method. And then, Bayes classifier is proposed to elimi-
nate the misclassification points to refine the segmentation
result. Experiments with two typical video clips are used

to demonstrate that the proposed method outperforms pre-
vious methods like GMM, NKDE and SKDE in both seg-
mentation result and converging speed. Future work can
address how to deal with more challenging scenarios and
how to improve algorithm converging and the system run-
ning speed further.
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Figure 2 Comparison of GMM, NKDE, SKDE and Our proposed method.

Figure 3 Background stability comparison between GMM, NKDE, SKDE and Our proposed method.
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